Structures Atomiques et Moléculaires des Sels Diastéréoisomères des α -Phényl- α -méthylacétates d' α -Phényl-éthylammonium p et n

PAR MARIE-CLAIRE BRIANSO

Laboratoire de Minéralogie-Cristallographie, Université Pierre et Marie Curie associé au CNRS, 4 place Jussieu, 75230 Paris Cédex 05, France

(Reçu le 14 avril 1976, accepté le 18 mai 1976)

The structure determination of the two diastereoisomeric salts of α -phenylethylammonium α -phenyl- α -methylacetate, p and n, was carried out by direct methods; R is 7.8 for salt n and 7.4% for salt p. The phase diagram of the two salts foreshadows two different structures and molecular combinations; nevertheless, some common structural elements (e.g. stacking axis) are found to exist.

Introduction

La séparation des énantiomères à partir d'un racémique par formation et recristallisation de sels diastéréoisomères est parfois difficile, voire même irréalisable. Les obstacles rencontrés sont les suivants: (1) difficulté, ou impossibilité, d'obtenir des sels cristallisés, (2) trop faible différence de solubilité entre les deux sels, (3) formation de sels doubles entre chacun des deux sels, et (4) formation de solutions solides entre sels diastéréoisomères.

La syncristallisation entre sels diastéréoisomères semble être relativement fréquente ainsi que le montrent Leclercq & Jacques (1975) en établissant divers diagrammes de solubilité entre sels diastéréoisomères.

En collaboration avec ce groupe de travail, nous avons entrepris d'étudier, sur le plan cristallographique ce qui distingue les sels diastéréoisomères isomorphes de ceux qui ne le sont pas.

Nous nous sommes donc proposés d'étudier plusieurs couples de ces sels correspondants: (a) aux différents cas signalés par les diagrammes de solubilité (séparation, formation d'un sel double, formation de solution solide), et (b) à un squelette fixe (acide-base) ayant pour seule variante le substituant de l'acide. La série entreprise fait intervenir les sels d' α -phényl-éthylamine et d'acide phénylacétiques α substitués:

$$C_6H_5-CH(-R)-CO_2(-), C_6H_5-CH(-CH_3)-NH_3(+)$$

Le diagramme de solubilité des sels diastéréoisomères dans le cas de l'acide hydratropique ($R = CH_3$) fait apparaître deux composés pour lesquels la séparation est facile, ce qui peut faire attendre deux espèces d'arrangements très différents pour des molécules d'acides et de base suivant le signe relatif du pouvoir rotatoire de la base par rapport à celui de l'acide.

Par la suite nous désignerons par sel n(+, -):

et par sel
$$p(+,+)$$
:

Les sels énantiomères n(+, -) et n(-, +) d'une part et p(+, +) et p(-, -) d'autre part sont équivalents du point de vue cristallographique.

Données cristallographiques

Les paramètres de la maille élémentaire ont été obtenus sur des clichés de cristal tournant ou de Weissenberg et affinés à l'aide du diffractomètre utilisé pour la mesure des intensités.

Les intensités diffractés ont été mesurées pour des angles $\theta < 60^{\circ}$ avec la radiation $K\alpha$ du Cu, puis corrigées des facteurs de Lorentz et polarisation.

Le Tableau 1 récapitule toutes les données cristallographiques des deux composés.

Tableau 1. Données cristallographiques

	p(+,+)	n(+, -)
Groupe spatial	P21	P 212121
Nombre d'unités formulaires	•	
par maille Z	2	4
a (Å)	$11,211 \pm 0,010$	$16,080 \pm 0,010$
b (Å)	$12,249 \pm 0,010$	$15,470 \pm 0,010$
c (Å)	$6,558 \pm 0,010$	$5,800 \pm 0,010$
γ (°)	$115,84 \pm 0,50$	90
$(\alpha = \beta = 90^{\circ})$,	
Volume (Å ³)	810	1532
$d_{c} (g \text{ cm}^{-3})$	1,10	1,16
Nombre de réflexions	,	,
indépendantes recueillies	1615	1654
-	dont 1425	dont 1064
	non nulles	non nulles
R final (%)	7,4	7,8

Détermination des structures

Dans les deux cas nous avons déterminé les phases des facteurs de structure en appliquant le programme

MULTAN élaboré par Germain, Main & Woolfson (1971) basé sur la formule de la tangente de Karle & Hauptman (1956). Le Tableau 2 donne les moyennes et la distribution des facteurs de structure normalisés. Trois réflexions de phase quelconque ont été introduites comme ensemble de départ.

Tableau 2. Moyennes des facteurs de structure
normalisés

	Théo				
	centro-	Expérimental			
	symétrique	symétrique	p(+,+)	n(+,-)	
E^2	1	1	1	1	
$E^{2} - 1$	0,9680	0,7360	0,7728	0,7806	
Ε	0,7980	0,8860	0,8686	0,8684	

Sel p(+, +)

Parmi les 32 solutions possibles, la troisième solution par ordre des meilleurs combinaisons des différentes 'figures de merit' a donné les 11 atomes de la molécule acide. Deux affinements de phases par la méthode de la tangente (Karle & Hauptman, 1956) et une série de Fourier différence ont permis d'obtenir l'ensemble des deux molécules.

Sel n(+, -)

Parmi les 32 solutions possibles, les trois premières solutions par ordre de meilleures combinaisons des différentes 'figures de merit' ont donné 17 atomes; une série de Fourier différence a permis de placer les trois atomes manquants.

Tableau 3. Paramètres atomiques du sel n

Les paramètres x, y, z sont $\times 10^4$ et les $\beta_{IJ} \times 10^5$.

	x	у	Z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
C(1)	8050 (9)	7305 (10)	5180 (34)	27 (9)	39 (9)	311 (63)	-2(7)	-3 (22)	7 (29)
C(2)	9682 (11)	1282 (13)	3031 (37)	55 (9)	71 (13)	176 (86)	1 (8)	- 59 (24)	- 17 (29)
C(3)	9092 (12)	958 (13)	6669 (37)	46 (10)	50 (13)	602 (92)	5 (9)	-6 (27)	51 (28)
N	7543 (8)	5808 (8)	4951 (23)	43 (6)	39 (7)	303 (48)	-5 (5)	-18 (18)	-2 (20)
C(5)	8303 (10)	7826 (12)	3321 (35)	49 (8)	43 (13)	279 (77)	6 (8)	-9 (22)	-8 (26)
C(6)	7474 (11)	8550 (11)	6963 (34)	41 (9)	51 (11)	435 (88)	1 (9)	- 28 (29)	- 46 (23)
C(7)	9033 (11)	1850 (13)	7124 (32)	35 (9)	77 (11)	145 (70)	9 (7)	-8 (22)	24 (27)
C(8)	9621 (10)	2174 (12)	3518 (32)	34 (9)	49 (12)	323 (72)	2 (8)	0 (23)	-20(25)
C(9)	8278 (10)	6371 (10)	5198 (36)	32 (7)	34 (10)	384 (82)	14 (7)	-14 (23)	- 16 (26)
C(10)	9291 (10)	2459 (11)	5576 (27)	35 (8)	45 (11)	163 (68)	4 (7)	-6 (22)	-3 (24)
C(11)	7646 (11)	7683 (11)	7029 (32)	44 (10)	22 (10)	352 (82)	-11 (8)	7 (23)	-33 (25)
C(12)	9407 (10)	675 (12)	4599 (38)	45 (9)	61 (12)	430 (-)	6 (9)	- 64 (30)	26 (33)
C(13)	8716 (11)	6109 (11)	7403 (38)	53 (10)	54 (11)	468 (98)	11 (8)	-47 (28)	8 (25)
C(14)	8144 (11)	8713 (13)	3372 (37)	41 (10)	58 (13)	301 (95)	-13 (9)	6 (28)	24 (27)
C(15)	7739 (11)	9104 (12)	5104 (37)	53 (10)	41 (10)	320 (99)	-6 (8)	-6 (29)	10 (32)
C(16)	9264 (11)	3420 (11)	6246 (33)	41 (9)	56 (12)	230 (74)	12 (8)	- 16 (23)	- 10 (24)
C(17)	90 (12)	3848 (13)	5795 (45)	35 (10)	47 (13)	709 (-)	5 (9)	- 55 (34)	- 72 (24)
O(2)	8005 (6)	4079 (7)	5552 (20)	41 (7)	46 (6)	212 (54)	6 (5)	1 (16)	5 (16)
O(1)	8813 (8)	3994 (10)	2607 (22)	54 (7)	95 (10)	353 (56)	10 (7)	29 (17)	88 (21)
C(20)	8636 (10)	3875 (10)	4607 (32)	47 (8)	21 (9)	403 (75)	-4 (7)	-2 (28)	23 (27)

Tableau 4. Paramètres atomiques du sel p

Les paramètres x, y, z, sont $\times 10^4$ et les $\beta_{IJ} \times 10^5$.

	x	у	Z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
C(1)	7162 (4)	1952 (3)	6247 (0)	99 (4)	85 (3)	143 (9)	41 (3)	16 (5)	12 (5)
$\tilde{C}(2)$	8318 (4)	2919 (4)	5087 (9)	108 (4)	78 (3)	195 (10)	27 (3)	8 (5)	8 (5)
C(3)	9238 (4)	2383 (4)	4458 (9)	82 (3)	87 (3)	178 (9)	14 (3)	13 (5)	5 (5)
C(4)	9793 (5)	1922 (6)	5895 (11)	136 (5)	143 (5)	256 (13)	68 (5)	-1(7)	6 (7)
C(5)	9082 (5)	4065 (4)	6392 (13)	166 (6)	78 (4)	412 (18)	22 (4)	26 (10)	- 40 (8)
C(6)	9514 (6)	2288 (7)	2405 (11)	179 (7)	191 (8)	186 (11)	84 (6)	45 (8)	6 (8)
C(7)	961 (6)	1350 (7)	3301 (15)	153 (7)	201 (9)	430 (22)	93 (7)	34 (11)	-31(12)
C(8)	688 (6)	1417 (7)	5278 (17)	138 (6)	156 (7)	522 (28)	74 (6)	22 (11)	17 (12)
C(9)	385 (9)	1791 (10)	1890 (14)	265 (11)	277 (14)	278 (20)	156 (11)	108 (13)	8 (13)
O (1)	6196 (3)	1239 (3)	5220 (8)	109 (3)	77 (2)	188 (7)	8 (2)	- 19 (4)	8 (4)
O(2)	7227 (3)	1900 (4)	8152 (8)	117 (4)	159 (4)	138 (8)	39 (3)	23 (4)	15 (4)
C(P1)	4527 (4)	1757 (4)	1306 (10)	91 (3)	87 (3)	235 (11)	33 (3)	13 (6)	16 (6)
C(P2)	6351 (5)	3845 (5)	551 (13)	144 (5)	90 (4)	408 (20)	37 (4)	56 (9)	13 (8)
C(P3)	7122 (6)	5057 (5)	1157 (17)	158 (6)	90 (4)	617 (32)	31 (5)	63 (13)	-15(11)
C(P4)	5343 (4)	3070 (4)	1880 (10)	103 (4)	91 (3)	275 (13)	47 (3)	10 (6)	-12(6)
C(P5)	5136 (5)	3518 (5)	3701 (12)	168 (7)	132 (6)	300 (15)	88 (6)	0 (9)	-23(8)
C(P6)	6920 (6)	5475 (6)	2943 (19)	176 (8)	112 (6)	744 (39)	68 (6)	-29(15)	-97(13)
C(P7)	5922 (7)	4724 (7)	4239 (14)	219 (9)	143 (6)	417 (21)	104 (7)	-37(12)	-6/(10)
C(10)	3783 (5)	1554 (6)	-734 (11)	154 (5)	134 (6)	353 (14)	63 (5)	-81(8)	-4(7)
N	5395 (3)	1104 (3)	1256 (8)	109 (3)	71 (2)	175 (7)	30 (2)	-2 (5)	4 (4)

C(1)-

-C(2)

Affinement des structures

Les coordonnées des atomes ont été affinées à l'aide d'un programme d'affinement par moindres carrés (Mornon, Delettré, Lepicard & Bally, 1973) à matrice complète dérivé du programme de Busing, Martin & Levy (1962), en attribuant à chaque atome un facteur de température isotrope, puis anisotrope.

Tableau 5. Distances interatomiques (Å) et angles de liaison (°) du sel n

C(7) - C(10) = 1.375 (43)

1,580 (50)

C(17) - C(16)

C(16)-C(C(16)-C(C(20)-O(C(20)-O(C(10)-C(C(10)-C(C(2)-C(C(12)-C(C(12)-C(C(3)-C(20) 1,59 10) 1,53 1) 1,21 2) 1,22 8) 1,39 2) 1,41 12) 1,38 3) 1,38 7) 1,40	97 (43) 97 (42) 13 (38) 51 (35) 52 (42) 12 (47) 39 (48) 36 (49) 99 (48)	$\begin{array}{c} C(9)C(13) \\ C(9)N \\ C(9)C(1) \\ C(1)C(1) \\ C(11) - C(6) \\ C(6)C(15) \\ C(15) - C(14) \\ C(14) - C(5) \\ C(5)C(1) \end{array}$	1,536 (46) 1,535 (38) 1,497 (43) 1,403 (43) 1,374 (45) 1,450 (47) 1,362 (48) 1,400 (47) 1,414 (44)
	$\begin{array}{c} C(17)-C(1)\\ C(17)-C(1)\\ C(10)-C(1)\\ C(10)-C(1)\\ C(16)-C(2)\\ C(2)-C(2)\\ C(2)-C(1)\\ C(10)-C(8)\\ C(8)-C(2)\\ C(2)-C(1)\\ C(10)-C(8)\\ C(3)-C(7)\\ C(7)-C(1)\\ C(12)-C(3)\\ C(3)-C(7)\\ C(7)-C(1)\\ C(7)-C(1)\\ C(7)-C(1)\\ C(7)-C(1)\\ C(7)-C(1)\\ C(7)-C(1)\\ C(1)-C(1)\\ C(1)-C($	$\begin{array}{l} 6) - C(20) \\ 6) - C(10) \\ 6) - C(20) \\ 0) - O(1) \\ 0) - O(2) \\ 0) - O(2) \\ 0) - O(2) \\ 0) - C(2) \\ 0) - C(1) \\ 0) - C(1) \\ 0) - C(12) \\ 2) - C(12) \\ 2) - C(10) \\ 0) - C(13) \\ 0) - C(11) \\ 1) - C(1) \\ 1) - C(5) \\ 0) - C(11) \\ 1) - C(5) \\ 0) - C(1) \\ 1) - C(1) \\ 1)$	$\begin{array}{c} 108,4 \ (4,9)\\ 109,7 \ (5,0)\\ 107,2 \ (4,5)\\ 118,0 \ (5,5)\\ 115,5 \ (5,0)\\ 126,6 \ (6,3)\\ 122,4 \ (5,6)\\ 120,7 \ (6,1)\\ 120,3 \ (6,5)\\ 119,0 \ (6,7)\\ 119,0 \ (6,7)\\ 121,8 \ (6,4)\\ 118,2 \ (5,7)\\ 119,2 \ (5,5)\\ 109,0 \ (4,6)\\ 116,5 \ (6,2)\\ 122,1 \ (6,4)\\ 119,7 \ (5,9)\\ 121,7 \ (5,9)\\ 121,7 \ (5,9)\\ 121,7 \ (5,9)\\ 121,7 \ (5,9)\\ 121,7 \ (5,9)\\ 121,7 \ (5,9)\\ 123,3 \ (4,1)\\ 118,9 \ (3,9)\\ 118,4 \ (3,8)\\ 112,8 \ (4,2)\\ 109,5 \ (4,1)\\ 109,0 \ (5,0)\\ \end{array}$	
Ecarts aux Plan 1	plans moye	ns en Å		
C(16) - 0,0007	C(20) 0,0026	O(1) -0,0008	O(2) -0,0006	
Plan 2 C(1) 0,0323	C(11) - 0,0031	C(6) 0,0123	C(15) -0,0213	C(14) -0,0171
C(5) 0,0263	C(9) -0,0327			
Plan 3 C(16) -0,2339	C(10) -0,0393	C(8) 0,0005	C(7) 0,0008	C(2) 0,0918
C(3) 0,0865	C(13) 0,1306			

Angle entre les plans 2 et $3 = 9^{\circ}$.

Fig. 1. Angles et distances intramoléculaires du sel n.

Tableau 6. Distances interatomiques (Å) et angles de liaison (°) du sel p

C(1) - O(2)

1,255 (9)

1,524 (10)

$\begin{array}{c} C(2) = -C \\ C(2) = -C \\ C(3) = -C \\ C(4) = -C \\ C(8) = -C \\ C(7) = -C \\ C(9) = -C \\ C(6) = -C \\ C(1) = -C \\$	$\begin{array}{cccc} (5) & 1, \\ (2(3) & 1, \\ (2(4) & 1, \\ (2(8) & 1, \\ (2(7) & 1, \\ (2(9) & 1, \\ (2(6) & 1, \\ (2(3) & 1, \\ (2(3) & 1, \\ (2(1) & 1,$	546 (14) 502 (12) 379 (14) 446 (19) 343 (21) 366 (23) 399 (22) 398 (15) ,251 (9)	C(P C(P C(P C(P C(P C(P C(P C(P C(P C(P	$P_{1} = N$ $P_{1} = C(10)$ $P_{1} = C(P4)$ $P_{4} = C(P5)$ $P_{5} = C(P7)$ $P_{5} = C(P7)$ $P_{5} = C(P3)$ $P_{5} = C(P2)$ $P_{5} = C(P4)$	1, 1, 1, 1, 1, 1, 1,	506 (538 (511 (375 (396 (387 (336 (411 (415 (11) 14) 13) 14) 18) 21) 21) 21) 18) 15)
	$\begin{array}{c} O(1) & = 0 \\ O(1) & = 0 \\ O(2) & = 0 \\ C(3) & = 0 \\ C(4) & = 0 $	C(1) - O(C(1) - O(C(1)) - O(C(1)) - O(C(1)) - O(C(2))	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 5 \\ 5 \\ 5 \\ 5 \\ 9 \\ 7 \\ 7 \\ 8 \\ 4 \\ 3 \\ 6 \\ 2 \\ 2 \\ (P4) \\ (P4) \\ (P2) \\ (P4) \\ (P4) \\ (P2) \\ (P3) \\ (P4) \\ (P1) \\ (2) \\ (P5) \\ (P$	123,5 117,3 119,2 112,1 108,1 109,5 119,4 123,2 118,0 121,0 120,4 117,9 120,7 109,0 115,0 109,8 119,8 118,4 121,5 120,3 120,1 120,2 120,8 121,3 120,8	(1,4) (1,3) (1,3) (1,4) (1,3) (1,4) (1,3) (1,5) (2,5) (3,4) (3,0) (2,8) (2,2) (1,9) (1,7) (1,4) (1,6) (1,4) (1,6) (1,4) (1,6) (1,4) (1,6) (1,4) (1,6) (2,2) (2,3) (3,0) (2,7) (2,3) (1,9) (1,7) (1,8)		
Ecarts aux Plan 1	c plans m	oyens en	Å				
C(2) -0,0023	C(3) - 0,010	5	C(4) 0,0145	C(8 - 0,00))60	-0	C(7) 0,0036
C(9) -0,0047	C(6) 0,014	1					
Plan 2							
C(P1) -0,0159	C(P4 0,012) 6	C(<i>P</i> 2) 0,0113	C(<i>F</i> - 0,00	?3) 018	-0	C(P6) 0,0195
C(P7) -0,0022	C(<i>P</i> 5 0,011) 3					
	Ang	le entre l	es plans	1 et 2 = 8	31°.		
		N 2.80	9 02 12	51 128 1 12 me			
				174			

Pour l'ensemble des facteurs de structure différents de zéro, le facteur R final est de 7,8 pour le sel n(+, -)et de 7,4 pour le sel p(+, +).

Résultats

Les Tableaux 3 et 4 décrivent les paramètres atomigues, les Tableaux 5 et 6 les distances interatomiques et les angles de liaison.*

* La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 31903: 16 pp., 1 microfiche). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI 1NZ, Angleterre.

Fig. 2. Angles et distances intramoléculaires du sel p.

Fig. 3. Projection (001) de la structure du sel n.

Les Figs. 1 et 2 représentent les molécules de sels net p et les Figs. 3 et 4, les projections (001) des structures des sels *n* et *p*.

Description des structures

(1) Comparaison des molécules et de leurs positions relatives

(a) Molécule de base: C_6H_5 -CH(-CH₃)-NH₃. Les angles et les distances intramoléculaires des deux molécules d'amine dans les sels énantiomères sont comparables entre eux; leurs valeurs sont proches des mesures couramment admises pour celles-ci; l'atome d'azote est tétraédrique et engagé dans trois liaisons hydrogène avec les oxygènes de la fonction carboxyle de l'acide antagoniste; nous pouvons cependant noter que la distance C-N, dans le cas du sel n (1,535 Å), est sensiblement supérieure à celle obtenue pour le sel p (1,506 Å) et dans les deux cas un peu supérieure à la distance théorique (1,479 Å).

(b) Molécule d'acide: C_6H_5 -CH(-CH₃)-CO₂. Les angles et les distances du noyau benzénique correspondent, dans les deux sels, aux valeurs usuelles. Les deux molécules se distinguent au niveau du carbone asymétrique C* alors que les distances sont classiques dans le cas du sel p, elles deviennent supérieures de 0,03 à 0.04 Å à ces valeurs dans le cas du sel n, bien que les angles restent tétraédriques.

Les distances et les angles du groupement acide carboxylique sont proches des valeurs généralement admises; mais, alors que les distances C-O sont équivalentes dans le cas du sel p (1,255 et 1,251 Å), elles sont différentes pour le sel n (1,213 et 1,251 Å); la molécule acide du sel n parait donc subir des contraintes et tensions supérieures à celles subies par le sel p.

La représentation de Newman (Fig. 5, Tableau 7) des deux molécules d'acide et de base montre que les

Tableau 7. Représentation de Newman comparée suivant la liaison C^{*}–C(φ) des molécules d'acide et de base

Angle entre le plan du noyau benzénique et le plan défini par les trois atomes suivants	n	п
C(φ), C*, N C(φ), C*, C(CH ₃)	113,1° 123,4	70,3° 51,3
$C(\varphi), C^*, C(COOH) C(\varphi), C^*, C(CH_3)$	119,4 118,1	113,4 129,0

Tableau 8. Valeurs comparées des longueurs (Å) et angles de liaison N···O (°)

X': atome déduit de l'atome initial par une translation de réseau parallèle à l'axe c. X(21): atome déduit de l'atome initial par l'opération de symétrie 2₁. Les déviations standard sont exprimées entre parenthèses.

0-1 ()

Sel $p(+,+)$ Sel $n(+,-)$	
N····O(1) 2,732 (18) N····O(1) (2) 2,	798 (27
$N \cdots O(1) (2_1) = 2,732 (17) = N \cdots O(2)' (2_1) = 2,$	723 (31
$N \cdots O'(2)$ 2,751 (22) $N \cdots O(2)$ 2,	810 (29
C(P1), N, O(1) 102,600 (21) $C(9)$, N, O(2) 107,	400 (25
$C(P_1)$, N, $O(1)(2_1)$ 106,700 (14) $C(9)$, N, $O(1)(2_1)$ 124,	300 (27
$C(P_1)$, N, $O(2)'$ 112,500 (16) $C(9)$, N, $O'(2)(2_1)$ 109,	401 (32

acides et les bases, dans chaque sel, possèdent des conformations identiques: le noyau benzénique éclipse l'atome d'hydrogène du carbone asymétrique dans les quatre cas.

(c) Positions relatives des molécules d'acide et de base. Les molécules d'acide et de base sont liées entre elles par un réseau de liaison hydrogène tridimensionnel à partir de l'atome d'azote sur les atomes d'oxygène des groupements acide carboxylique. Les distances $O \cdots N$ sont un peu supérieures dans le cas du sel n.

Bien que les deux structures aient des éléments communs que nous dégagerons plus loin, nous remarquons tout d'abord que les positions relatives des molécules de base B et d'acide A sont parallèles pour le sel n et perpendiculaires pour le sel p (Tableau 8).

Les angles, distances, écarts aux plans moyens, et angles relatifs des différents plans moléculaires sont rapportés dans les Tableaux 3, 4, 5, 6 et les Figs. 1, 2.

(2) Comparaison des deux empilements

(a) Description des empilements. On aurait pu attendre, a priori, une entité moléculaire indépendante formée d'une molécule d'acide A et d'une molécule de base B liées l'une à l'autre par liaison hydrogène. En fait, dans les deux cas, l'atome d'azote est lié à trois atomes d'oxygène par liaisons hydrogène équivalentes, les molécules antagonistes étant toutes groupées autour d'un même axe binaire et déduites des molécules initiales soit par l'action de l'axe binaire helicoïdal, soit par l'action de la translation de réseau parallèle à cet axe.

Ainsi, dans les deux cas, nous avons une colonne formée de quatre molécules (deux molécules A et deux molécules B) dont l'axe est l'axe hélicoïdal 2₁, parallèle au paramètre commun aux deux structures (sel n: c =5,800; sel p: c = 6,558 Å).

Nous venons de définir une entité fixe linéaire; pour construire le groupe spatial correspondant, il faut assembler ces colonnes à l'aide de translations de réseau et d'éléments de symétrie directe puisque les composés étudiés sont optiquement actifs (Pérucaud, 1973).

Prenons les cas les plus simples: translations de réseau perpendiculaires à l'axe de la colonne, groupe $P2_1$ (sel p); axe binaire perpendiculaire à l'axe de la colonne, groupe $P2_12_12_1$ (sel n) ou $P2_12_12_1$. On peut donc distinguer deux types de liaisons intermoléculaires: liaisons fortes de type liaison hydrogène qui structurent et matérialisent la colonne moléculaire définie précédemment, liaisons faibles de type van der Waals qui assurent la cohésion générale de l'empilement des différentes colonnes entre elles. Les distances sont toutes supérieures à 3,34 Å pour le sel p et à 3,54 Å pour le sel n.

(b) Etude de la structure de la colonne. L'examen des projections (001) de chaque composé montre l'analogie des deux architectures: l'atome d'azote est liée à trois atomes d'oxygène suivant une répartition semblable dans l'espace des liaisons $N \cdots O$, et ceci à partir d'une molécule de base *B* placée de manière identique dans

les deux cas par rapport à l'axe binaire 2_1 de référence (distance, angle du plan du cycle par rapport au plan perpendiculaire à l'axe) (Fig. 6).

Les trois liaisons hydrogène $N \cdots O$ étant réparties dans l'espace, il y a deux possibilités de placer la molécule d'acide A pour satisfaire à ces liaisons, selon que la molécule est droite ou gauche.

Les deux positions étant très différentes, les contraintes stéréochimiques impliquant une orientation des deux molécules l'une par rapport à l'autre non

Fig. 4. Projection (001) de la structure du sel p.

Fig. 5. Représentation de Newman comparée suivant la liaison $C^*-C(\varphi)$ des molécules d'acide et de base.

Fig. 6. Superposition des projections (001) des structures des sels p et n au voisinage de l'axe binaire hélicoïdal parallèle à l'axe c commun. --- molécule (p,p), --- molécule (n,p).

superposable, les deux sels obtenus ne pouvant syncristalliser sont facilement séparables.

Nous remercions M. Leclercq et J. Jacques du Laboratoire de Chimie Organique des Hormones, Collège de France, qui nous ont proposé ce travail et participé à la discussion des résultats.

Références

BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Oak Ridge National Laboratory Report ORNL-TM-305.

- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). *MULTAN*. Laboratoire de Chimie physique, Univ. de Louvain, 39 Schapenstraat, Louvain, Belgique.
- KARLE, J. & HAUPTMAN, H. (1956). Acta Cryst. 9, 635-651.
- LECLERCQ, M. & JACQUES, J. (1975). Bull. Soc. Chim. Fr. pp. 2052–2056.
- MORNON, J.-P., DELETTRÉ, J., LEPICARD, G. & BALLY, R. (1973). Programme *AFFINE*. Laboratoire de Minéralogie-Cristallographie, Université P. et M. Curie, 4 place Jussieu, 75230 Paris 5, France.
- Pérucaud, M. C. (1973). Thèse d'état, CNRS n° A.O. 8779.
- PÉRUCAUD, M. C., CANCEILL, J. & JACQUES, J. (1974). Bull. Soc. Chim. Fr. pp. 1011-1014.

Acta Cryst. (1976). B32, 3045

Structure Cristalline d'Oxydes Doubles de Rhénium. I.Sm₃ReO₈

PAR JEAN-PIERRE BESSE, MICHÈLE BOLTE ET GILBERT BAUD

Equipe de Physico-chimie des Matériaux, Université de Clermont-Ferrand, B.P. 45, 63170 Aubière, France

ET R. CHEVALIER*

Laboratoire de Minéralogie–Cristallographie associé au CNRS, Université Paris VI, 4 place Jussieu, 75230 Paris Cédex 05, France

(Reçu le 18 septembre 1975, accepté le 18 mai 1976)

Samarium rhenium oxide, Sm_3ReO_8 , crystallizes in the monoclinic system with a = 14.765 (10), b = 7.383 (5), c = 6.076 (5) Å, $\gamma = 110.95^{\circ}$, Z = 4 and space group $P2_1/a$. Single-crystal diffraction data were collected on an automatic four-circle diffractometer. The structure, determined by Patterson and Fourier methods, has been refined by least-squares procedures to an R of 0.031 for 1906 observed reflexions. It can be visualized as composed of ReO₆ octahedra, joined together in pairs by a shorter O–O distance, defining tunnels parallel to the c axis which are occupied by a double chain of edge-shared Sm₄O tetrahedra.

Introduction

Ce travail s'insère dans le cadre plus général de l'étude cristallochimique d'oxydes doubles de rhénium.

L'étude du système La-Re-O a révélé l'existence d'un composé de type nouveau de formule La_3ReO_8 (Baud, 1969). Nous avons par la suite préparé les composés analogues Ln_3ReO_8 avec tous les éléments des lanthanides et l'yttrium (Baud & Besse, 1974).

Ce mémoire concerne la structure cristalline du composé Sm_3ReO_8 qui est représentatif de l'un des trois types structuraux observés.

Partie expérimentale

On obtient des monocristaux de Sm_3ReO_8 par action directe à 900 °C de Re_2O_7 gazeux en excès sur Sm_2O_3 . Ils présentent l'aspect d'aiguilles prismatiques de couleur jaune-orangé, allongées suivant l'axe c, leur plus grande dimension pouvant atteindre 2 mm.

L'étude des clichés de cristal tournant, de Weissenberg et de précession conduit à leur attribuer une maille monoclinique. Les paramètres affinés par la méthode des moindres carrés à partir des diagrammes de poudre: $a=14,765\pm0,010$, $b=7,383\pm0,005$, $c=6,076\pm0,005$ Å, $\gamma=110,95\pm0,05^{\circ}$, impliquent la présence de quatre unités formulaires par maille ($D_x=8,277$, $D_m=8,09$ g cm⁻³).

Les conditions d'existence des réflexions h0l, h=2n et 0k0, k=2n sont compatibles avec le groupe d'espace $P2_1/a$.

Il est à noter que la valeur du paramètre a est exactement le double de celle du paramètre b. Cette coïncidence ainsi que les positions particulières des atomes lourds et de certains atomes d'oxygène expliquent l'existence d'une pseudo-maille de symétrie orthorhombique (Baud & Besse, 1974) reliée à la précédente maille par la matrice de transformation

^{*} Adresse actuelle: Université de Clermont-Fd, Laboratoire de Physique des Matériaux, B.P. 45, 63170 Aubière, France.